

winMASW-case-study4-ML-joint-RL-HVSR.pdf

file name

www.winmasw.com e-mail: gdm@winmasw.com

contact

All rights reserved - Tutti i diritti sono riservati

# case study#4 – Joint Analysis of Rayleigh & Love waves (+ HVSR)

**Goal**: to provide evidence of the fact that fundamental mode of Rayleigh waves can be practically completely absent thus showing the importance of joint analysis with Love waves.

The presented *dataset* was acquired for geotechnical purposes over a slope of a hill in Tuscany (Italy). Data appear extremely interesting cause they put in evidence the fact that, under some conditions, Love waves are essential to clarify and properly interpret Rayleigh-wave dispersion. Acquired data are reported in Figure 1. It can be easily noted that in the 20-40Hz frequency range (pertaining to the shallowest layers), phase velocities of the signal dominating the Rayleigh-wave velocity spectrum are clearly higher (about 400m/s) with respect to the ones shown by the Love-wave velocity spectrum (about 250 m/s). Although the dispersion curves of Rayleigh and Love waves are clearly different, such a large difference should alarm, even if a "newcomer" would surely consider the signal dominating Rayleigh waves as related to the fundamental mode.

With the aim of illustrating the use of Pareto front analysis in a joint inversion procedure, we analyzed the data according to two different interpretative hypotheses.

**Hypothesis#1** (the one that would have been followed by non-experts): the signal dominating the Rayleigh-wave velocity spectrum is interpreted as belonging to the fundamental mode.

**Hypothesis#2:** the dominating signal is attributed to the first higher mode while the small signal in the 25-30Hz range with a phase velocity of about 250m/s to the fundamental mode (please notice that we could also avoid this second "attribution" thus considering the first higher mode only).

Results of the (automatic) inversion performed while considering the <u>first hypothesis</u> are reported in Figure 2 and 3. Please notice two facts:

1. the dispersion curves of the Pareto models (i.e. the best models) do not match the picked ones (Figure 2). Rayleigh-wave dispersion curves tend to stay below (i.e. be slower than) the picked one (for Love waves the opposite occurs).

2. the model distribution in the bi-objective space (Figure 3) is clearly "unbalanced": the cloud of models does not point towards the [0, 0] *utopia point* and the Pareto-front models are not symmetric when compared to the *universe* of considered models (for details please see the papers reported in the *References*).









Figures 4 and 5 report the main outcomes of the join inversion performed while considering the <u>second interpretative hypothesis</u> (the energy dominating the Rayleigh-wave velocity spectrum is now interpreted as belonging to the first higher mode).

Now the dispersion curves of the model belonging to the Pareto front *perfectly* overlap with the picked dispersion curves (Figure 4) for both Rayleigh and Love waves. Moreover, the model distribution in the bi-objective space coherently points towards the *utopia point* (Figure 5). Please also notice that now the  $V_s$  profiles of the Pareto front models (right panel in Figure 4) appear extremely so-to-say *focused* (compare with Figure 2) showing two main horizons: the first at a depth of about 5m and the second 10m.



**Figure 4**. Second interpretative hypothesis: the energy dominating the Rayleigh-wave spectrum in the 20-55Hz frequency range is interpreted as belonging to the first higher mode.



The goodness of the second hypothesis is supported by two further facts.

## Fact#1 - CPT data

Figure 6 reports the CPT (*Cone Penetration Test*) that stopped at about 6m because of a stiff layer that, in the light of the surface wave analysis, can be interpreted as a gravel-like material while the real *bedrock* is actually deeper (10m depth - compare with the  $V_S$  profile in Figure 4).



## Fact#2 - HVSR data

A further confirmation of the overall consistency of the above-presented analyses is given by the *Horizontal-to-Vertical Spectral Ratio* acquired on the site. Figure 7 reports the observed and modeled HVSR curves (the modeled curve refer to the average model obtained from the final Pareto front models reported in Figure 4).



#### Final remark

It can be noted that (also in accordance with the theory – e.g. Dal Moro, 2012; Dal Moro and Marques Moura, 2012) Love waves show a much simpler "phenomenology" which results extremely useful (and under some circumstances even necessary) to properly interpret Rayleigh-wave dispersion.

It must be finally underlined that the joint analysis of Rayleigh and Love waves plus HVSR via forward modeling (i.e. the user personally modifies the  $V_S$  and thickness values while seeking for a good overlap between observed and modeled data) can be done in the "*Velocity Spectra, Modeling & Picking*" panel of *winMASW* (see video tutorials available from the <u>www.winmasw.com</u> site - area "publications").

## References

*Multi-component Acquisition and Joint Analysis of Surface Waves: Two Case Studies for Two Possible Inversion Strategies* (Dal Moro G. and Marques Moura R.M., 2012), submitted to *J. Appl. Geophysics* 

*Joint Analysis of Surface Waves* (Dal Moro G.), Graz (Austria), 9-13 July 2012, (Mini-Symposium *Surface and Interface Acoustic Waves in Solids*, 8th European Solid Mechanics Conference), invited speaker

Joint Analysis of Rayleigh and Love Wave Dispersion for Near-Surface Studies: Issues, Criteria and Improvements (Dal Moro G. and Ferigo F., 2011), J. Appl. Geophysics, 75, 573-589

Some Aspects about Surface Wave and HVSR Analyses: a Short Overview and a Case Study (Dal Moro G., 2011), *invited paper*, BGTA - Bollettino Geofisica Teorica e Applicata, 52, 241-259

Insights on Surface-Wave Dispersion Curves and HVSR: Joint Analysis via Pareto Optimality (Dal Moro G., 2010), J. Appl. Geophysics, 72, 29-140

V<sub>S</sub> and V<sub>P</sub> Vertical Profiling via Joint Inversion of Rayleigh Waves and Refraction Travel Times by means of Bi-Objective Evolutionary Algorithm (Dal Moro G., 2008), J. Appl. Geophysics, 66, 15-24

Joint Inversion of Surface Wave Dispersion Curves and Reflection Travel Times via Multi-Objective Evolutionary Algorithms (Dal Moro G. and Pipan M., 2007), J. Appl. Geophysics, 61, 56-81